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Abstract—Intrusion detection systems (IDS) have already
demonstrated their effectiveness in detecting various attacks in
cellular vehicle-to-everything (C-V2X) networks, especially when
using machine learning (ML) techniques. However, it has been
shown that generating ML-based models in a centralized way
consumes a massive quantity of network resources, such as
CPU/memory and bandwidth, which may represent a critical
issue in such networks. To avoid this problem, the new concept
of Federated Learning (FL) emerged to build ML-based models
in a distributed and collaborative way. In such an approach,
the set of nodes, e.g., vehicles or gNodeB, collaborate to create
a global ML model trained across these multiple decentralized
nodes, each one with its respective data samples that are not
shared with any other nodes. In this way, FL enables, on the one
hand, data privacy since sharing data with a central location is
not always feasible and, on the other hand, network overhead
reduction. This paper designs a new IDS for C-V2X networks
based on FL. It leverages edge computing to not only build a
prediction model in a distributed way but also to enable low-
latency intrusion detection. Moreover, we build our FL-based IDS
on top of the well-known CIC-IDS2018 dataset, which includes
the main network attacks. Noting that, we first perform feature
engineering on the dataset using the ANOVA method to consider
only the most informative features. Simulation results show
the efficiency of our system compared to the existing solutions
in terms of attack detection accuracy while reducing network
resource consumption.

Index Terms—C-V2X, Intrusion detection system, Edge com-
puting, Federated deep learning.

I. INTRODUCTION

Emerging 5G networks have enabled lower latency, higher
capacity, and increased bandwidth compared to 4G net-
works [1]. In vehicular context, the 5G technology boosted the
existing services of both Intelligent Transport Systems (ITS),
and Advanced Driver-Assistance Systems (ADAS) [2]. As an
application of ITS, a vehicle-to-everything (V2X) network
provides a great communication medium between vehicles
and their surroundings (infrastructure, pedestrians, other ve-
hicles, etc.). However, vehicular networks are characterized
by a high mobility and hence a very dynamic topology and
diversity of communication, which make them an easy target
for various security attacks. Indeed, providing an efficient
security mechanism is mandatory due to secure critical data
exchanged in the network, in addition to the damage that
can cause such attacks [3]. Attacks on vehicular networks

can be classified into two main classes: First, the attacks
targeting the intra-vehicle network, which aim to damage the
internal network of the vehicles and hence disrupt the primary
operations of ADAS; Second, the attacks targeting the inter-
vehicle network, which aim to interrupt the connection of the
vehicle with its environment, and hence disrupt the functioning
of ITS systems. The latter class is critical due to the scale
of the damage, which can vandalize the entire network. In
this context, Intrusion Detection Systems (IDS) have proved
their effectiveness in both detecting and mitigating suscep-
tible attacks, especially when leveraging Machine Learning
(ML) techniques and the huge traffic generated by C-V2X
networks [4, 5].

In the literature, IDSs can be classified based on the system
architecture into three types [4]: (i) Centralized, where a cen-
tral node makes the detection, (ii) Distributed, where multiple
nodes collaborate to perform the detection, and (iii) Hybrid,
representing the combination of the two first types. Many
centralized IDS solutions have been proposed [5]. However,
the centralized IDS might become a system bottleneck, and
it is also susceptible to a single point of failure. Distributed
IDSs have thus emerged to mitigate the aforementioned scal-
ability and reliability issues. Leveraging on edge computing,
distributed IDSs share workloads across multiple components.
This allows not only high scalability and reliability, but also
fast processing and quick response time [6]. Besides, the
IDSs can also be classified based on the detection method
into misuse detection and anomaly detection. Misuse detection
methods detect attacks based on the known attack signatures;
they effectively detect known attacks with low errors. How-
ever, they cannot detect newly emerged attacks that do not
have similar properties to known attacks. In contrast, the
anomaly detection methods are based on the hypothesis that
the attacker’s behavior differs from that of a normal user. They
classify network traffic as an attack if its characteristics are far
from normal traffic patterns. However, this latter type requires
data since it is based on ML techniques. The data used in
this system plays a decisive role in the results obtained by
the system. Hence, we value the data selection by studying
different datasets and comparing them to choose the adequate
dataset for our problem.

In this paper, we design a new distributed low latency



intrusion detection system for vehicle-to-everything networks.
We leverage federated deep learning to train a prediction
model in a federated way [7]. We first train several distributed
models, with the same model architecture, on the MEC (Multi-
Access Edge Computing) level using data collected from its
covered network, then aggregate them to a global model in
the cloud [8]. Finally, the aggregated model is sent again to
the network edges to be used in predicting attacks.

The rest of this paper is organized as follows. Section II
describes some related works. Section II-B presents and com-
pares relevant datasets according to various criteria. Section III
details the main steps in the design and the implementation of
our distributed Intrusion Detection scheme (DID). Section IV
describes the implementation settings and discusses the ob-
tained results. Finally, Section V concludes the paper.

II. RELATED WORKS

Intrusion detection systems proved their efficiency to secure
vehicular networks, as they can secure the system from both
internal and external attacks with high accuracy, especially
when combined with machine learning techniques. These
make it possible to exploit the huge amount of data in training
accurate models with less time complexity. In this section, on
one hand, we review existing ML-based IDS schemes that
were designed for C-V2X. On the other hand, we also study
existing datasets in order to select the suitable dataset for our
case.

A. Machine/Deep Learning-based IDS

The authors of [9] proposed a collaborative IDS using the
Generative Adversarial Network (GAN), by collecting the in-
formation flow from vehicles and RSUs, in the subnetwork of
each distributed SDN (Sotware Defined Network) controller.
Then, all the distributed SDN controllers and the cloud server
train a global model, deployed at the SDN controllers to
monitor the network flow independently. The training of this
latter uses BiGANs, generative models that can learn the
mapping from simple latent distributions to arbitrarily complex
data distributions and generate realistic data [10]. When the
IDS detects abnormal behavior, the system will manage the
flow transmission and deal with the attacks using a flow
of rules. This mitigation mechanism imposes rules to block
abnormal flows.

The authors of [11] proposed an intrusion detection frame-
work for vehicular networks, by designing a one-hop cluster-
based architecture. The framework selects a cluster head
through periodic exchange of status messages, including trust
values of the neighbors, to choose the vehicle with the higher
utility function. The framework includes two intrusion detec-
tion models: (1) a global model carried by the cluster head;
its mission is to evaluate the trust level of monitored vehicles
and to banish the malicious vehicles, using block list and store
and forward technique in case no RSU is within the radio; and
(2) a local model carried by the cluster members equipped
with three techniques: (i) a rules-based detection technique
(RBD) to detect an anomaly using a set of predefined rules; (ii)

learning-based detection technique (LBD), an SVM algorithm
that classifies the sources of the input into normal behaviors
and anomalies; and (iii) a rules-based decision technique
that inputs the results of the RBD and LBD to modify the
neighbor’s reputation.

Even the above works designed novel machine learning-
based IDS for vehicular networks, either in centralized
way [11] or distributed way [9]; however, the results of the
solutions proposed in [9] remain questionable due to the usage
of the KDD99 dataset for validation, which was generated
in 1998. Indeed, this dataset was incredibly valuable at the
time of release, but it lost most of its relevance through aging
and the change in the network architecture [12]. In addition,
the solution designed in [11] cannot deal with some critical
attacks, such as Sybil attacks, that can cause severe damage
to the network due to the usage of trust-based systems.

B. Available Datasets

Due to the importance of the training data in anomaly-
detection-based IDS, we dedicate this subsection to reviewing
existing datasets related to IDSs, in order to select the suitable
one for our IDS.

There are many datasets created over the last few years to
deal with intrusion detection. Researchers of the University
of California processed the Tcpdump of a prior dataset called
DARPA. It was created by MIT Linkon laboratory in 1998 to
create another dataset called KDD-Cup 1999. However, this
latter consists of a lot of redundant and duplicate data samples.
Researchers in [13] tried to cleaning it and creating a better
version called NSL-KDD in 2009.
CAIDA is another dataset specific to DDOS attacks developed
by the Center of Applied Internet Data Analysis in 2007. ISCX
IDS 2012 was created by observing the alpha and beta profile
of the network packets [14].
AFDA dataset contains features that show attack patterns and
system call traces [15]. CIC-IDS-2017 and CSE-CIC-IDS-
2018 datasets were generated by the Canadian Institute of
Cyber Security in 2017 and 2018, respectively. They contain
80 features compared to prior datasets. It lists a new range of
attacks generated from real network traffic features, such as
Distributed Denial of Service, Denial of Service, brute force,
XSS, SQL Injection, Botnet, Web attack, and Infiltration [16].

The authors of [17] compared the most used data sets in
intrusion detection. In Table I, we extend their comparison to
cover recent datasets as well as more comparison parameters.
We give high importance to the generation environment and
the year of generation, to stay as close as possible to real-world
scenarios and the coverage of the denial of service attacks
in both centralized and distributed ways, considering their
devastating impact. Based on this comparison, we chose the
recent CIC-IDS2018 dataset since it contains not only various
features related network communication (80 features), but also
it includes the main attacks that can target V2X networks,
including DoS, DDoS, Botnet, brute force, etc.
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Fig. 1. Architecture overview

TABLE I
DATASETS COMPARAISON

Realistic Traffic Labeled data 0-day Attacks Full Packet capture DOS DDOS # features # records Files format generation environment Year
KDD-Cup YES YES NO YES YES NO 41 5M CSV IEEE 802.3 1999
Caida YES NO NO NO NO YES - - PCAP IEEE 802.3 2007
NSL-Kdd YES YES NO YES YES NO 41 5M CSV IEEE 802.3 2009
ISCX - 2012 YES NO NO YES YES YES - - PCAP/XML IEEE 802.3 2012
ADFA-LD YES YES YES YES NO NO 26 90M CSV IEEE 802.3 2014
UNSW-NB 15 NO YES NO YES YES NO 49 257K CSV IXIA traffic generator 2015
CIC-IDS 2018 YES YES YES YES YES YES 79 15M PCAP/CSV IEEE 802.3 2018
AWID YES YES NO YES YES NO 155 210M CSV IEEE 802.11 2021

III. DID: DISTRIBUTED INTRUSION DETECTION SYSTEM
FOR C-V2X

In this section, we describe our distributed intrusion de-
tection system for C-V2X, leveraging federated learning. We
start first presenting the selected dataset, followed by the pre-
processing as well as feature selection steps. Then, we present
the general neural network architecture. Finally, we outline the
tuning study to determine the optimal model parameters for
the best performance results. Before we proceed, we provide
an overview about the IDS system architecture.

A. IDS System Architecture Overview

Fig. 1 shows the general architecture of our solution. It
consists of three main layers (cellular network layers): (i) the
radio access network (RAN) where the main task of this layer
is data collection; the packets exchanged in this layer will
be forwarded to the next layer; (ii) the edge Layer which is
in charge of extracting the essential features, to train the local
models from the data received from the RAN layer using CIC-
FlowMeter v3. (iii) the Core Layer where its main task is to
aggregate the local models, received from the edge layers, into
a global model. This global model will be distributed to the
clients (network edges) to be used in predicting attacks from
the flow received from the RAN layer.

B. Federated Learning-based Prediction Model

1) Dataset Overview: CIC-IDS2018 results from a collab-
orative project between the Communications Security Estab-
lishment (CSE) and The Canadian Institute for Cybersecurity
(CIC). It includes seven different attack scenarios, namely
Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks,
and infiltration of the network. The attacking infrastructure
includes 50 machines, and the victim organization has five
departments, including 420 PCs and 30 servers. This dataset
includes the network traffic and logs files of each machine
from the victim side, along with 80 network traffic features
extracted from captured traffic using CICFlowMeter-V3[18].

2) Data Pre-processing: Data pre-processing is the first
step of the machine learning process. The dataset is the output
of CICFlowMeter-V3, which contains 80 features (columns)
and around 15 million records (rows). It contains irrelevant
data to our problem, and several missing values or infinite
values in some records. We addressed those problems by first
deleting the missed values records, and we omitted data that
we judged irrelevant to our problem. Most of the omitted data
was related to the generation environment (Source IP address,
port, etc.). We also formatted the data in a suitable format, by
encoding categorical data using one-hot-encoding. One more
step in formatting our data is to split it into training and test
subsets; we opted for 70% for the training and 30% for the
test.



3) Features Selection: Eliminating useless (irrelevant
and/or redundant) features enhances the accuracy of classi-
fication, while speeding up the training step [19]. Thus, we
determine the features with the higher correlation with the
labels. After that, we chose to work with 30 features as the
correlation seems to drop after the thirtieth feature. This will
enhance the accuracy and reduce the calculation time to the
third.

4) Deep Learning Architecture: The deep learning model
consists of five layers: one input layer with 30 neurons that
correspond to the input features, passed to four hidden layers
of 60, 120, 60, and 30 neurons, respectively, with rectified
linear activation function (RELU) passed to 12 neurons of the
output layer, that correspond to the 12 attacks covered by our
solution, with softmax activation. We opted for cross-entropy
loss and ADAM optimizer for neural weights’ updates.

5) Federated Training Process: Federated learning is a
category of collaborative learning framework where several
participants collaborate in training a global model. During
the training step, the central node trains a global model in
a distributed manner and then shares the model with all
participants. First, the central node initializes a global model
and specifies its hyper-parameters, such as learning rate and
the number of epochs. Then, it shares them with all the
participants to train a local version of it, using the local data
of each participant. After that, the central node collects the
model weights from all participants and aggregates them to
one global model, using an aggregation function (Federated
Averaging FedAvg [20] in our case). Finally, it updates the
weights of the global model with the aggregated weights.

IV. EXPERIMENTAL STUDY

A. Implementation Settings

To get the best performance, we studied various configu-
rations of the model hyper-parameters. In the following, we
detail how we proceeded to choose the model parameters, such
as learning rate, batch size, and epochs number.

1) Learning Rate: To find the appropriate learning rate for
the proposed model, we used an open-source implementation
of the technique proposed in [21], that varies the learning rate
and plots the changes in the loss. Fig. 3 [A]) shows that from
10-5 to 10-4, the loss is almost fixed; the learning rate is too
low for the network to learn anything. From about 10-3, the
loss starts to decrease; this is the lowest learning rate where
our network can learn. By the time we reach 10-1, our model
is learning very quickly. At just over 10-1, we see an increase
in loss. Finally, at 0.5, our loss has exploded; the learning rate
is far too high for our model to learn. Looking at this graph,
we can determine our learning rate’s lower and upper bounds.
Specifically, the lower bound equals 10-3, while upper bound
= 10-1.

2) Batch size: To determine the suitable batch size, we
evaluate the performance of our model on different batch
sizes. Fig. 3 [B]) shows the accuracy, precision, and loss for
different batch sizes. We can see that we choose between
the values of 64, 128, and 254, since they have the same

performance. To balance the computational cost and escape
the local minimums, we decide to work with 64.

3) Number of Epochs: To choose the number of epochs,
we vary the number of epochs and study the changes in the
loss. Fig. 3 [C]) shows that between 1 and 2 epochs, the loss
continues to decrease. Nevertheless, from the 3rd epoch, our
loss function starts to stabilize, which means that the suitable
number of epochs is between 3 and 6 epochs. We have chosen
to work with 3 epochs, because our model is more efficient
compared to other numbers of epochs.

B. Performance Evaluation in Terms of Prediction
Table II summarizes the results obtained on the test set.

The results show that our solution can predict 95% of the
traffic in the test set correctly. More specifically, 92% precision
means that if our model predicts an attack, it is 92% correct.
In addition, a recall of 0.94 means it correctly detects 94% of
the attacks.

To understand the behavior of our system with the different
attacks, we also computed the confusion matrix. The role of
this matrix is to present the distribution of our prediction
broken down by classes. This allows us to see where our
model is confused. Table III shows the predictions of our
system, the diagonal represents the attacks correctly predicted
by our system, and the other cells show the number of false
predictions and the label assigned to them. We notice that
our system confuses attacks with a small number of instances
(brute force attacks, SQL injection, and infiltration attacks),
with other attacks or even with benign traffic, but successfully
detects the rest of attacks.

C. Performance Evaluation in Terms of Network Overhead
When generating a learning model in federated way, net-

work overhead represents one of the important performance
indicators. Through our distributed solution, with the usage of
federated learning, we were able to reduce 95% of network
traffic, as the following calculations demonstrate. Indeed, for
the federated learning, the network overhead corresponds to
the number of sent packets, to exchange the local models and
global model. Thus, Number of packets = (Client packets X
departments number X rounds ) + initialization packet, which
equal to Number of packets = (5X5X5)+ 1 = 126 packets.
Considering a maximum packet size of 1500 bytes, the total
size of exchanged packets is number of packets * packet size
= 126 * 1.5 MB = 189 MB. On the other hand, the Dataset
size (after features selection) is 5,625 Go with 5.625 - 0.189
= 5.436 Go. of data are kept at the clients. Therefore, using
federated learning, we were able to avoid exchanging 5.436
Go of data network, which represent 95% of network traffic.

D. Comparison
To better understand the behavior of our solution against

attacks, we have chosen three attacks to see how our solution
will react. We have chosen two attacks with many instances:
DoS and DDoS, and one with a reduced number of instances,
which is the infiltration attacks. Figs 3 represent the predic-
tions of our system in 40 instant simulations. We compare
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TABLE II
MODEL PERFORMANCE

Accuracy Precision Recall F1-score Detection rate False alarm rate AUC
Results of centrelized model 0.96451 0.9596 0.9321 0.9721 0.6041 0.0087 0.9987
Results of federated learning model(DID) 0.95813 0.9247 0.9448 0.9644 0.5806 0.0094 0.9985

TABLE III
CONFUSION MATRIX

Benign Bot Brute Brute DDoS attack DDoS attack DDoS attack DoS attack FTP Brute Infiltration SQL
force-web force XSS HOIC LOIC-UDP GoldenEye Slowloris force Injection

Benign 0.87 0.02 0 0 0 0 0.02 0 0 0.09 0
Bot 0 0.99 0 0 0 0 0 0.0003 0 0.0007 0
Brute 0.61 0 0 0 0.02 0 0 0.11 0 0.24 0
force-web
Brute 0.27 0 0 0 0 0 0 0.33 0 0.38 0
force XSS
DDoS attack 0.001 0 0 0 0.99 0 0 0 0 0 0
HOIC
DDoS attack 0 0.024 0 0 0 0.97 0 0 0 0.006 0
LOIC-UDP
DDoS attack 0.001 0 0 0 0 0 0.999 0 0 0 0
GoldenEye
DoS attack 0.63 0 0 0 0 0 0.34 0 0 0.01 0
Slowloris
FTP Brute 0 0 0 0 0 0 0 0 1 0 0
force
Infiltration 0.35 0.003 0 0 0 0.001 0 0.003 0.001 0.6411 0
SQL 0.38 0.12 0 0 0.3 0 0 0 0 0.2 0
Injection

the results of the three models with the real traffic. For both
DoS and DDoS attacks, the graphs are overlapped, proving
that our solution and the two other models were able to detect
the attacks. On the other hand, the graphs of the infiltration
attacks do not overlap with the real network graph, which
means that we miss-classify some traffic due to the size of
the training data for this type of attack. These results show
that our federated learning-based IDS can effectively detect
DoS and DDoS attacks, while reducing the network overhead,
thanks to the federated learning technique.

V. CONCLUSION AND PERSPECTIVES

In this work, we propose a novel intrusion detection sys-
tem for C-V2X networks, capable of detecting many attacks
that may severely impact the normal operation of this type
of networks, such as DoS, DDoS, and botnets. All while
considering the response time, thanks to federated learning
and edge computing, we bypass a significant data exchange
between the core network and the vehicle. Future work could
be testing the effectiveness of our solution in real scenarios
and increasing the accuracy of the deep learning model by

building a more diverse and complete data set. Exploiting the
concept of transfer learning to cover more attacks could be a
good addition, especially when it comes to attacks on network
slices. We can also extend our system to detect 0-day attacks
by adding a complementary unsupervised learning model.
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